8,366 research outputs found

    F-mode sensitivity kernels for flows

    Full text link
    We compute f-mode sensitivity kernels for flows. Using a two-dimensional model, the scattered wavefield is calculated in the first Born approximation. We test the correctness of the kernels by comparing an exact solution (constant flow), a solution linearized in the flow, and the total integral of the kernel. In practice, the linear approximation is acceptable for flows as large as about 400 m/s.Comment: 4 pages, 3 figures. Proceedings of SOHO18/GONG 2006/HELAS I. Beyond the Spherical Sun: A new era of helio- and asteroseismology. Sheffield, England. August, 200

    Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    Full text link
    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8-h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m/s in the clockwise direction at 40{\deg} latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anti-clockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m/s for the average outflow and 200 m/s for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between −-60{\deg} and 60{\deg}. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g. 4/(10^6 s) clockwise compared to 8/(10^6 s) anti-clockwise at 40{\deg} latitude). Results from MDI/SOHO obtained in 2010 are biased compared to the HMI/SDO results for the same period.Comment: 12 pages, 13 figures (plus appendix), accepted for publication in A&

    Mammographic image restoration using maximum entropy deconvolution

    Get PDF
    An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate an improvement in image spatial resolution in realistic noisy radiological images with no associated penalty in terms of reduction in the signal-to-noise ratio perceived by the observer. Images of the TORMAM mammographic image quality phantom were recorded using the standard magnification settings of 1.8 magnification/fine focus and also at 1.8 magnification/broad focus and 3.0 magnification/fine focus; the latter two arrangements would normally give rise to unacceptable geometric blurring. Measured point-spread functions were used in conjunction with the MEM image processing to de-blur these images. The results are presented as comparative images of phantom test features and as observer scores for the raw and processed images. Visualization of high resolution features and the total image scores for the test phantom were improved by the application of the MEM processing. It is argued that this successful demonstration of image de-blurring in noisy radiological images offers the possibility of weakening the link between focal spot size and geometric blurring in radiology, thus opening up new approaches to system optimization.Comment: 18 pages, 10 figure

    Reconstruction of Solar Subsurfaces by Local Helioseismology

    Full text link
    Local helioseismology has opened new frontiers in our quest for understanding of the internal dynamics and dynamo on the Sun. Local helioseismology reconstructs subsurface structures and flows by extracting coherent signals of acoustic waves traveling through the interior and carrying information about subsurface perturbations and flows, from stochastic oscillations observed on the surface. The initial analysis of the subsurface flow maps reconstructed from the 5 years of SDO/HMI data by time-distance helioseismology reveals the great potential for studying and understanding of the dynamics of the quiet Sun and active regions, and the evolution with the solar cycle. In particular, our results show that the emergence and evolution of active regions are accompanied by multi-scale flow patterns, and that the meridional flows display the North-South asymmetry closely correlating with the magnetic activity. The latitudinal variations of the meridional circulation speed, which are probably related to the large-scale converging flows, are mostly confined in shallow subsurface layers. Therefore, these variations do not necessarily affect the magnetic flux transport. The North-South asymmetry is also pronounced in the variations of the differential rotation ("torsional oscillations"). The calculations of a proxy of the subsurface kinetic helicity density show that the helicity does not vary during the solar cycle, and that supergranulation is a likely source of the near-surface helicity.Comment: 17 pages, 10 figures, in "Cartography of the Sun and the Stars", Editors: Rozelot, Jean-Pierre, Neiner, Corali

    Time-distance helioseismology: Sensitivity of f-mode travel times to flows

    Full text link
    Time-distance helioseismology has shown that f-mode travel times contain information about horizontal flows in the Sun. The purpose of this study is to provide a simple interpretation of these travel times. We study the interaction of surface-gravity waves with horizontal flows in an incompressible, plane-parallel solar atmosphere. We show that for uniform flows less than roughly 250 m s−1^{-1}, the travel-time shifts are linear in the flow amplitude. For stronger flows, perturbation theory up to third order is needed to model waveforms. The case of small-amplitude spatially-varying flows is treated using the first-order Born approximation. We derive two-dimensional Fr\'{e}chet kernels that give the sensitivity of travel-time shifts to local flows. We show that the effect of flows on travel times depends on wave damping and on the direction from which the observations are made. The main physical effect is the advection of the waves by the flow rather than the advection of wave sources or the effect of flows on wave damping. We compare the two-dimensional sensitivity kernels with simplified three-dimensional kernels that only account for wave advection and assume a vertical line of sight. We find that the three-dimensional f-mode kernels approximately separate in the horizontal and vertical coordinates, with the horizontal variations given by the simplified two-dimensional kernels. This consistency between quite different models gives us confidence in the usefulness of these kernels for interpreting quiet-Sun observations.Comment: 34 pages, accepted to Astrophysical Journa

    An Assessment of Tarong Bottom Ash for Use on Agricultural Soils

    Get PDF
    Coal combustion by-products (CCBs), including fly ash and bottom ash, present a waste disposal problem in Australia due to a continuing demand for coal fired power. Pozzolanic Enterprises handle ash produced by the Tarong Energy coalfired power station in SouthWest Queensland, which produces approximately 1,200,000 tonnes per annum of CCBs. This comprises roughly 1,100,000 tonnes of fly ash and 100,000 tonnes of furnace bottom ash. The volume and unique properties of the Tarong bottom ash present a significant opportunity for agronomic use. Of particular interest is the ability of Tarong bottom ash to markedly improve the water holding capacity of soils. Given Australia's rural environment is currently enduring a 'one-in-one- hundred-year' drought a study of the ability of Tarong bottom ash to improve water holding capacity is timely. This paper details physical and chemical properties relevant to agronomic use and water holding capacity of ash/soil blends along with some results from initial field trials

    Towards a Robust Method of Modelling Leaf Appearance in Plants

    Get PDF
    The thermal interval for leaf tip appearance (phyllochron) is a critical variable for modelling plant development and growth. Phyllochron varies across environments, but is generally constant for a species grown in specific environments. For example, the phyllochron in maize is lower in temperate environments than in tropical and subtropical environments. The limitation of existing data is that each experiment has been evaluated in a narrow range of environments, and underlying mechanisms have not been adequately examined. Consequently, no method is available to model the variation across environments. Models use constant values that are fixed for particular environments. This situation is unsatisfactory, as model users must have values that have been determined for their locality. A method of adjusting the value of phyllochron according to genotype adaptation groups or environmental conditions is required. Of these two options, the latter appears most promising as there is little, if any, variation among genotypes when grown in specific environments. Recent information shows that phyllochron in maize is related to light intensity. The data also suggests that phyllochron depends on the adequacy of current photosynthesis (source) to meet the demands of the plant for growth (sink), one aspect of which is the production of new leaves. This paper reports on concepts and early progress in relating phyllochron to both irradiance and thermal time

    Natural control of the mosquito population via Odonata and Toxorhynchites

    Get PDF
    The main impact of mosquito pests is the transmission of many dangerous diseases and death. Hence, the reduction of their population by the use of a natural control method is a primary objective of this research. This mosquito reduction method utilises different species of predators (Odonata) and (Toxorhynchites) to substantially improve the environment. The frequency of capturing the pest mosquitoes by the predators is determined using a Pascal distribution, whilst insect mortality is modelled using a Weibull distribution. The results from the model show that by using insect predators, a significant reduction of the mosquito population is possible in less than eighty days
    • …
    corecore